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Drops and bubbles are nonspreading, local, compactly supported features. They are also equilibrium
configurations in partial wetting phenomena. Yet, current macroscopic theories of capillary-dominated
flow are unable to describe these systems. We propose a framework to model multiphase flow in porous
media with nonspreading equilibrium configurations. We illustrate our approach with a one-dimensional
model of two-phase flow in a capillary tube. Our model allows for the presence of compactons:
nonspreading steady-state solutions in the absence of external forces. We show that local rate dependency
is not needed to explain globally rate-dependent displacement patterns, and we interpret dynamic wetting
transitions as the route from equilibrium, capillary-dominated configurations, towards viscous-dominated
flow. Mathematically, these transitions are possible due to nonclassical shock solutions and the role of

bistability and higher-order terms in our model.
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Multiphase flow systems are often described by using
upscaled mathematical models, aimed at capturing the
relevant flow mechanisms while keeping the problem trac-
table in a computational or analytical sense. Upscaling
procedures invoke approximations that reduce the dimen-
sionality of the models, write equations at a scale that is
much larger than the typical capillary length, or both.
Examples are ubiquitous in fluid mechanics, from Lucas-
Washburn laws during imbibition in nanopores [1,2] to
basin-scale models of CO, migration in geologic carbon
sequestration [3]. Assumptions of vertical flow equilib-
rium, or the lubrication approximation, permit reducing
the dimensionality of thin film flows [4,5] and gravity
currents [6], usually described by evolution equations for
the height of the interface. By averaging the pore-scale
processes over a representative elementary volume, multi-
phase flow through porous media is modeled by balance
laws written in terms of fluid volume fractions, or satura-
tions [7]. Necessarily, all these upscaled descriptions lead
to loss of information about complex small-scale flow
features. What is surprising, and disturbing, is that current
theories fail to describe simple capillary phenomena, like a
droplet on a flat surface or an air bubble at rest in a
capillary tube [Fig. 1(a)]. The origin of the problem seems
to lie in the macroscopic description of nonspreading
systems associated to partial wetting.

The equilibrium shape of a water droplet deposited on a
flat solid surface illustrates two regimes in wetting phe-
nomena [8,9]. In the complete wetting regime, the droplet
spreads over the solid surface, ultimately leaving a micro-
scopic film attached to the solid. In the partial wetting
regime, the droplet relaxes towards an equilibrium con-
figuration, characterized by a static contact angle 6. The
transition from complete to partial wetting, or from
spreading to nonspreading systems, is controlled by the
interfacial energies through the spreading coefficient,
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3 =7y, — (Y5 + ), where 7 is the surface tension be-
tween the two fluids and vy,, and 7y,, are the surface
tensions associated with solid-fluid interfaces. Spreading
systems (2 = 0) are relatively well understood, and dif-
fusive scaling laws for the evolution of relevant quantities
have been derived and confirmed experimentally [1,5,8,9].
Nonspreading systems (2 < 0), however, continue to chal-
lenge our mathematical descriptions. In some cases, such
as thin film flows, the difficulty arises from the description
of the dynamics of the contact line [5]. In volume-fraction-
based models, the problem can be stated in mathematical

a

FIG. 1 (color online). Statics and dynamics of fluid slugs in a
capillary tube. (a) Static configuration of an air bubble (trans-
parent) between two slugs of water (dyed blue) in a glass
capillary tube. The liquid-gas interface exhibits a well-defined
contact angle, characteristic of a system with partial wetting.
(b) Snapshot of an advancing liquid slug, blown by air from left
to right. The leading interface advances with a contact angle that
is larger than the static contact angle. At the back end of the slug,
air penetrates through the center of the tube and leaves a macro-
scopic film of viscous fluid attached to the walls. The advancing
contact angle and the film thickness are rate-dependent.
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terms: how to obtain local, nonspreading, and compactly
supported features—bubbles in a capillary tube—as
steady-state solutions of a scalar, parabolic conservation
law. Here, we address this latter challenge. We build a
model of two-phase flow (e.g., air displacing water) in a
capillary tube, which describes the flow dynamics through
the evolution of gas and water saturations, S, and S,
respectively, along the tube. The saturation of a fluid is
the fraction of the cross-sectional area of the tube occupied
by that fluid. Our simple 1D model captures hitherto unex-
plored capillary phenomena by accurately reproducing the
thermodynamic equilibrium of the system. One of the
fundamental advances in our model is that the steady-state
solutions are bubbles or fluid slugs—Iocal, nonspreading,
compactly supported features.

The transition from the capillary-dominated to the
viscous-dominated regimes is another fascinating aspect
of our model. Physically, multiphase systems often exhibit
“dynamic” behavior, that is, flow features that are rate-
dependent, like contact angles [8—11], displacement effi-
ciencies [12-14], capillary pressures [15-17], fractional
flow [18], or displacement pattern morphologies [19-21].
For instance, when air is injected at a constant rate in a tube
initially filled with a viscous fluid, the invading air forms
an advancing finger that leaves a macroscopic film of the
viscous fluid attached to the tube walls [Fig. 1(b)] [12,13].
The thickness of the film increases monotonically with the
capillary number Ca = Um,,/y, where U is the velocity of
the finger tip, 7,, is the viscosity of the defending fluid, and
v is the surface tension between the fluids [14,22-24].
Here, we show that rate dependency of the global displace-
ment patterns, such as the amount of fluid left behind in the
classical Bretherton experiment, can be explained and
modeled as the competition between capillary and viscous
forces, without resorting to rate-dependent constitutive
relations.

We consider incompressible, isothermal two-phase
flow in a tube, driven by imposed pressure gradients and
capillary forces. The evolution of fluid saturations can be
expressed as conservation of mass of the fluids, 9,5, +
dyu, = 0 with @ = g, w, subject to the constraint S, +
S,, = 1. We assume gradient-type volumetric fluxes u, =
— 40,11, where A, denotes the mobility of phase «. In
the classical models, the flow potentials 11, are identified
as averaged fluid pressures [7,17]. In contrast, we follow
the framework of E and Palffy-Muhoray for incompress-
ible polymer mixtures [25,26] and split the potentials as
Im,=up,+p+ p.gz, where u, is the chemical poten-
tial derived from a phenomenological free energy func-
tional of the two-component system, p is the pressure,
which enforces the incompressibility constraint, p, is the
fluid density, and g is the gravitational acceleration. After
algebraic manipulation, assuming for now a horizontal
tube, and using gas saturations as primary variables, the
model reads

arSg + ax(fg”‘T + /\g(l - fg)ax(luw - Mg)) =0, (1)
aqu = 0’ (2)

ur = _[()‘g + )‘w)axﬂg + )\wax(:u“w - /-Lg)] ()
The fractional flow function f, = A,/(A, + A,) is a
nonconvex, S-shaped function of the gas saturation that
controls the viscous-dominated flow regime. Closure of
the model (1)—(3) requires specifying constitutive rela-
tions for the fluid mobilities A, and the thermodynamic
potentials u,. We set the gas and water mobilities as
A, = R%S,/87n and A, = RS} /87, respectively, where
R is the radius of the tube and 7(S,) is an averaged
viscosity of the mixture. For simplicity, we assume that

n~! is linear with the fluid saturations: ! = n, ! +

(mg' = 1),

The chemical potential difference w,, — u, plays a
central role in the structure of saturation profiles at equi-
librium (uy = 0). In traditional models, this difference in
chemical potential is understood as a monotonic function
of the phase saturation—the so-called capillary pressure
function [7]. While a term of such nature can describe
diffusive, spreading behavior [1,7], nonspreading static
structures, like a simple stationary bubble in a capillary
tube, are precluded in the absence of external forces.
Inspired by phase-field modeling [25-28], we derive the
chemical potentials w, from a phenomenological free
energy functional F of the system.

To construct the F functional, we follow the classical
theory of phase separation of Cahn and Hilliard [27], and
de Gennes’s model for incompressible polymer mixtures
[25]. We approximate the specific free energy as the
sum of bulk, F,, and interfacial, F;, free energies. The
former is solely a function of fluid saturations, while
the latter includes gradient terms: F = F(S,, S,) +
Fi(S,,S,, VS, VS,). Our basic requirements are that
two stable states of the free energy correspond to the
bulk fluids, Sg =1 and §,, = 1, and that differences in
chemical potential between bulk fluids are consistent with
the Young-Laplace equation [[u,]] = 27 cosf/R, where
([mell = mels,~1 = pgls,—o- The simplest specific free
energy satisfying these conditions is

F = _W(l _ Sg)2(1 _ SW)Z
F I TR 52 — (1= 5,)]
r
+ Z K(Sg’ Sw)((ang)2 + (axSw)z)' (4)

In the following, we consider strictly nonspreading
systems, ¥y, — ¥, — ¥ <0, for which the three surface
energies are linked through the static contact angle, y,,, —
Ys¢ = ¥ cosf. Note that we define the contact angle 6 with
respect to the ‘““‘gas” phase, regardless of which phase
is more dense. Based on the above free energy, the
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common-tangent construction [29] yields, for arbitrary
contact angles 0° <6 = 180° and along S, =1—§,,
the stable states S, = 0 and S, = 1. The structure of the
function multiplying the square concentration gradients is
essential to obtain compactons [30]. The constant I" has
units of force, and, heuristically, we take k = SgSﬁ, with
a=2- % cosf and B =2+ % cosf. The strength of I’
is set to yield the correct width of the meniscus, 9,
where 8 = R|(1 — sinf)/ cos6)| for spherical-cap menisci
(Fig. 2). Since the interfacial width emerges from a
balance between the gradient energy term and the double
well, 82 ~TR/y(1 —cosf), we take I' = CpyR(l —
cosf)((1 — sinf)/ cosf)?, where Cr = 3/2 seems to yield
the correct 6.

The chemical potentials w, and w,, are the variational
derivatives of the free energy with respect to the fluid satu-

rations: u, = 6F/8S, = dF/dS, — 0,(0F/3(3,S,)).
Thus,
27y cosf
My — Mg = — R
2v(1 — cosf)
- 7ng(1 - 8,1 —28,)
+ I'Vkd, (Vkd,S,), %)

where we have used the identity §,, = 1 — §,.

The model (1)-(3), together with the above defini-
tion (5), retains in part the classical structure of models
of multiphase flow in porous media. The saturation equa-
tion is a conservation law with an S-shaped fractional flow
and a nonlinear diffusion term. In the limit of zero dis-
sipation, Eq. (1) is a hyperbolic equation with Lax shock
solutions. Under static conditions Ca — 0, classical mod-
els predict spreading, or capillary redistribution. In our
model, the fourth-order term and the phase-segregating
bulk potential lead to a completely different behavior. At
static equilibrium, saturation profiles are nonspreading
compactons, that is, regions of pure fluid phases (bubbles)
separated by transition regions (menisci); see Fig. 1(a).
When driven out of equilibrium, through the imposition
of a pressure gradient or constant flow rate, the displace-
ment pattern depends on Ca [Fig. 1(b)]. This behavior
emerges naturally from the competition between the ad-
vective and higher-order terms.

We numerically solve the steady states of the transport
equation (1) under static conditions u; = 0 (Fig. 2). An
important consequence of the emergence of compacton
solutions is that equilibrium configurations may comprise
several small bubbles rather than a single, larger one. A
similar result of multiple local minima due to compactly
supported solutions was recently found in a phase-field
model of phase separation [30], where the authors show
the critical role of a nonlinear coefficient multiplying the
square-gradient term in the free energy, which vanishes at
S, =0 and S, = 1. In our model, the structure of this
nonlinear term also determines the curvature of the

transitions (menisci) for a given static contact angle. By
construction, the free energy functional [Eq. (4)] leads to
pressure jumps across interfaces that are consistent with
the Young-Laplace equation.
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FIG. 2 (color online). (a),(b) Steady-state configurations, ob-
tained by numerically solving the model equations (1)—(3) with
ur = 0, and their axisymmetric interpretation of the fluid distri-
bution along the tube: a gas bubble surrounded by a wetting fluid
such as water (a) or by a nonwetting fluid such as mercury (b).
The position of the interface is determined as h, = /S, for 6 >
90° and h, = /T =5, for § <90°. The equilibrium saturation
and pressure profiles change with the static contact angle.
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FIG. 3 (color online). Simulations of air injection at a constant
rate in a tube filled with a viscous fluid, where we assume a static
contact angle § = 180°. (a) Gas saturation profiles for different
capillary numbers. The volume of gas injected is the same in all
cases. The transition from a finger that leaves a thick film for
large Ca to the static case with phase separation at Ca— 0
results from the relative dominance of the hyperbolic or
higher-order terms, respectively. For intermediate capillary num-
bers, the gas saturation profiles exhibit nonclassical shocks with
a plateau. (b) Distribution of fluids inside the tube, obtained from
the computed saturation profiles. (¢) Comparison of the mass
fraction of viscous fluid left behind, m, with the experimental
results of Taylor [13]. We set m = 1 — S;, where S is the
plateau gas saturation. We compare the model predictions
with two functional forms of the water mobility, namely,
A, ~ 83 and A, ~ S,

To test the ability of our model to capture the dynamic
features of air-water displacements, we simulate constant-
rate air injection into a water-filled circular tube (Fig. 3).
We explain the classical experimental observations

a
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FIG. 4 (color online). Contact-line motion and dynamic contact
angle in the displacement of a water slug by air. (a) Water saturation
profiles for various injection rates (the top figure corresponds to the
static configuration Ca = 0). (b) Axisymmetric interpretation of
the fluid distribution inside the tube. Higher capillary numbers lead
to higher dynamic contact angles, in accordance with the classical
experiments of Hoffman [8,10].

[12-14], in which a film of the defending fluid is left
attached to the tube walls, as a result of the competition
between capillary and viscous forces. In our model, capil-
lary terms induce phase separation and therefore a com-
plete displacement of the resident fluid, while viscous
forces, represented by the hyperbolic term in Eq. (1),
tend to create a fast displacement along the center of the
tube that leaves a film of the more viscous fluid behind. Our
simulations honor this behavior: At small capillary num-
bers, the meniscus advances through contact-line motion.
Mathematically, the parabolic term dominates, and there-
fore the behavior of the solutions resembles phase separa-
tion. For large capillary numbers, viscous forces dominate,
and thick water films are left behind attached to the
walls [Fig. 3(b)]. In mathematical terms, the hyperbolic
term dominates, and the saturation profile resembles the
classical Lax shock solution [Fig. 3(a)]. For intermediate
capillary numbers, the gas saturation profiles exhibit
undercompressive shocks with a plateau, induced by the
structure of the bulk free energy and the presence of the
fourth-order term [31].

Under dynamic conditions, which drive the system out
of capillary equilibrium, the symmetry of displaced bub-
bles or slugs is broken as the capillary number increases.
We simulate the displacement of a capillary bridge by air at
a constant rate (Fig. 4). In quasistatic conditions Ca — 0,
the water slug is displaced almost completely, and there-
fore the symmetry is essentially retained: The advancing
and receding contact angles are similar. Higher capillary
numbers lead to steeper fronts, inducing a transition. As
Ca — oo, the symmetry is lost, and films are left behind. In
accordance with the classical experiments of Hoffman
[8,10], the advancing contact angle increases with the
flow rate. This effective dynamic behavior of the contact

- --- Lucas-Washburn
—— model

time

FIG. 5 (color online). Capillary rise experiments. We compare
the model predictions with the Lucas-Washburn theory for differ-
ent values of the Bond number Bo = {0, 0.1, 0.2, 0.3, 0.4, 0.6}. We
set y cos#/87,, = 10 and 7,,/n, = 1000.
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angle is a fascinating feature of our model, which emanates
from the competing effects of the various terms in the
governing equations. Other interesting features of capillary
phenomena in confined geometries could be analyzed with
extensions of the proposed model. These may include
instabilities in core-annular flow [32] or the effect of
spatial variations in pore geometry and surface properties
[11,33,34], limited to cases where the 1D upscaling is
appropriate.

As a further quantitative assessment of the model pre-
dictions, we consider the rise of a meniscus in a vertical
capillary, as predicted by our model and the Lucas-
Washburn theory (Fig. 5). The dimensionless parameter
comparing gravitational and capillary forces is the Bond
number Bo = ApgR?/ycosf, where Ap = p,, — p, is
the density difference between fluids.

It is well understood that upscaling capillary phenomena
often requires higher-order mathematical models. Sur-
prisingly, it has been commonly accepted that upscaled
descriptions of important multiphase flows, in particular,
flow through porous media, can be cast as second-order,
nonlinear advection-diffusion equations. Here we show
that a phase-field formulation captures static and dynamic
features of such flows that are precluded within the classi-
cal theories. Local, nonspreading structures, which are
characteristic of partially wetting systems, can be obtained
as steady-state solutions in the absence of external forces.
Pseudodynamic effects emerge naturally as the transition
from the capillary-dominated regime to the viscous-
dominated regime. The present study suggests that a para-
digm shift towards higher-order models in the macroscopic
description of multiphase flow through porous media may
henceforth be warranted [35].
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