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Abstract: As pipe breaks in water distribution networks produce serious consequences, water authorities strive to minimize the frequency of
their occurrence. Pressure management is an essential tool to reduce the frequency of breaks and it is closely linked to the proper analysis of a
maximum pressure indicator. A methodology that compares the unconditional cumulative distribution function (CDF) and the parametric
break-conditioned CDF of the maximum pressure indicator is proposed in this paper. The relationship between the CDFs compared is es-
tablished by means of the Bayes’ theorem, which allows determining a probability ratio. The objective is to identify the range of operation of
maximum pressure that is most likely to reduce pipe breaks. The methodology is applied to four sectors of the water distribution network in
Madrid (Spain). In three of those sectors, the maximum pressure indicator is a good predictor of the probability of pipe breaks, confirming that
the probability of breaks increases for high maximum pressure ranges. The methodology is validated in one sector, and results provide
good agreement between predicted and observed failure rates. DOI: 10.1061/(ASCE)WR.1943-5452.0000519. © 2015 American Society
of Civil Engineers.

Author keywords: Pressure management; Pipe breaks; Statistical analysis; Bayes’ theorem.

Introduction

One of the manifestations of the deterioration of water supply sys-
tems is frequent pipe breaks. System failures are one of the major
problems to be faced by water utilities due to their adverse conse-
quences. Networks may fail to fulfill the required levels of water
capacities and pressure heads offered to customers. Additionally,
breaks may cause water contamination by the intrusion of polluted
water. Other significant social impacts include the reduction in the
water-carrying capacity of pipes, service interruptions to end users,
flooding of private property, traffic congestion, damage to real
estate, loss of amenity due to noise, and disruption of local eco-
nomic activity.

For all these reasons, water utilities aim at mitigating the prob-
lem of break occurrence to as great an extent as possible. Since a
large investment is required to renew and replace pipe networks
(Gomes et al. 2011), several predictive deterioration models have
been developed (Kleiner and Rajani 2001) to assist water utilities in
the decision-making process (Wang et al. 2009). Predictive models
may be classified into physically based models, statistical models,

and data mining methods (Xu et al. 2011). Physical models attempt
to elucidate the physical mechanisms behind pipe breaks. Statistical
models are based on historical data and intend to reveal significant
pipe break correlations. Data mining methods have recently
emerged in this context due to the complexity of water network
systems and aim at discovering patterns in pipe failures data sets
(Berardi et al. 2008). The statistical models allow representing
break behavior and patterns in water mains (Wang et al. 2009)
based on historical data of deteriorating factors (Kleiner and Rajani
2001). They are considered a cost-effective tool to analyze and as-
sess the probability of pipe failure (Xu et al. 2011). Predicting fail-
ures in pipelines is challenging because they depend on many
factors that are difficult to characterize quantitatively (Babovic et al.
2002). Pressure management, which is usually related to the reduc-
tion of maximum operating pressure (Thornton and Lambert 2007),
is considered an effective tool for leakage control (Gomes et al.
2012), and it has also been shown to yield a decrease in the fre-
quency of pipe breaks (Palau et al. 2012; Lambert and Thornton
2011). Pressure management strives to ensure an optimum level
of service, while eliminating or reducing pressure transients and
large pressure fluctuations. These goals are achieved through faulty
pressure level controls and pressure reduction protocols (Thornton
and Lambert 2006), and is regarded as one of the least costly alter-
natives to meeting water supply needs (Girard and Stewart 2007).
Unfortunately, it is difficult to establish both the causal relation-
ships between pressure and pipe breaks, and the pressure operating
ranges that are to be established in order to achieve a reduction in
the number of such breaks (Lambert and Fantozzi 2010). In addi-
tion, the consequences of the pressure management depend on the
conditions of the water distribution systems (Fantozzi and Lambert
2007). Therefore, as water utilities encounter difficulties in making
decisions, decision-support tools are required. In addition, this also
involves consideration of uncertainties associated with the recorded
data, as it provides imprecise results of the methodologies or
models used.

To address the above challenges and the imprecision of recorded
data, and to guide the decision-making process, some authors have
used probability rules (Babovic et al. 2002) and, in particular, the
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Bayes’ theorem (Kulkarni et al. 1986; Watson et al. 2004; Watson
and Mason 2006; Watson 2005; Economou et al. 2007, 2008; Dridi
et al. 2005, 2009; Economou 2010). Babovic et al. (2002) show that
the causal relationship between two variables may be established in
a probabilistic sense. They also suggest that probability functions
may reduce the uncertainty of an underground asset where precise
information is difficult to access. Kulkarni et al. (1986) developed a
Bayesian diagnostic model to predict the probability of failure in
gas pipeline systems. They conditioned the probability of failure to
specific system characteristics and proposed that, if it is signifi-
cantly larger than the system-wide probability of failure, then
the set of characteristics may explain a relatively high failure rate
(Kleiner and Rajani 2001). Their results indicate that the model
adequately represents the observed data but does not consider
the time of break occurrence. Watson et al. (2004), Watson and
Mason (2006), and Watson (2005) use the Bayes’ theorem to es-
tablish a relationship between two variables (number of failures and
failure rate), considering observed data, in water distribution sys-
tems. They developed a Bayesian-based decision support system to
facilitate the identification of efficient asset management policies.
The Bayesian approach allows incorporating, expressing, and up-
dating the uncertainty to determine such policies. They argue that
it is a suitable tool for use in water distribution networks where
the time series of data is limited and when the quality needed
for a deterministic analysis is lacking. Economou et al. (2007,
2008), Dridi et al. (2005, 2009), and Economou (2010) follow the
Bayesian diagnostic model of Watson et al. (2004), although they
propose a different approach to modeling the occurrences of pipe
failures in time.

In this paper, a Bayesian diagnostic methodology to link the
probability of pipe breaks to operating pressure in water distribu-
tion networks is proposed. The research question addressed here is
what range of operating pressure should be established in order to
reduce the probability of pipe breaks? Operating pressure in a dis-
trict metered area (DMA) is characterized by means of a pressure
indicator at the head of the DMA, which is added to the elevation
difference between the entry of the area and the average elevation of
the DMA (García et al. 2006). A pressure indicator may be defined
as the calculated statistic from the time series of pressure head over
a specific time window. If the statistic is the maximum value over
the time window, the indicator is referred to as a maximum pressure
indicator, which is the one chosen in this article. The time window
includes an awareness time of pipe breaks, which has been esti-
mated in the literature to be as much as 3 days (Morrison
2004). The proposed methodology is based on a two-step analysis.
In the first step, the probability distribution of the hourly time
series of the maximum pressure indicator is compared with the
probability distribution of indicator values at times coincident with
a reported pipe break. If both probability distributions are signifi-
cantly different, it may be concluded that there is a relationship
between the maximum pressure indicator and the occurrence of
pipe breaks, and the nature of this relationship is analyzed. In
the second step, the ranges of the maximum pressure indicator as-
sociated with a higher probability of pipe breaks are identified by
means of a Bayesian approach. Finally, the results of the analysis
may be used to support pressure-management protocols aimed at
efficiently reducing the excess pressures that may cause pipe
breaks. The effectiveness of the approach is illustrated by applying
the methodology to four sectors of the water distribution network of
Madrid (Spain) and by validating it in one sector. The results show
that the proposed methodology is a valuable tool to use in manag-
ing pressure in order to reduce pipe breaks in water distribution
systems.

Available Data

Pressure Head

Instantaneous pressure values, which are accurate to 1 m, are mea-
sured at the head of each DMA every 15 min. The time series of
pressure data is periodically transmitted to a control center in order
to be processed and stored. The average of four 15-min instanta-
neous pressure values is calculated to yield the hourly average pres-
sure head. The resulting time series of hourly average pressures
is the basis for the present study. It has to be taken into account
that the nature of the pressure data made it impossible to determine
if the breaks were due to short-term hydraulic transients (Wang et al.
2014) during the 15-min sampling intervals. The pressure head in
this study is measured at the head of the DMA. As the head losses
are relatively small, the average pressure over the DMA may be
estimated by adding to the pressure head measured at the head
of the sector the difference between the elevation at the head of
the sector and the average elevation of the DMA (García et al.
2006). The average elevation of the different zones and the eleva-
tion of each entry point are shown in the “Case Study” section.

Registry of Pipe Breaks

In the studied case, the water utility kept a record of pipe breaks.
The vast majority of those pipe breaks were identified thanks to
user reports. After a pipe break is reported, field work allows de-
termining the exact location where the pipe failed and whether the
failure was due to internal or external causes, such as inadequate
manipulation. Only unintentional pipe breaks were considered in
the present study. Every pipe break is identified by a distinct iden-
tification code. The databases record not only the identification
code, but also the location of the break and the moment when
the incident was first reported. The coordinates of the broken pipe
allow locating the break within a specific DMA. The available data
for this study are therefore the identification codes of reported fail-
ures, the location of the broken pipes, and the time when they
were first reported. The water utility did not keep a detailed record
of failure modes, and therefore no attempt was made to identify and
remove from the analysis those breaks that were not directly related
to pressure. General information of the properties of the sectors is
also provided and presented below in the section “Case Study.”

Methodology

Water utilities do not usually have an entire history of pipe failures,
and therefore the available data is often limited to recent periods of
time (Watson et al. 2004). A Bayesian model can provide estimates
of the probability of pipe breaks based on this type of relatively
sparse data (Watson et al. 2006). The present diagnostic Bayesian
methodology uses recorded pipe breaks in addition to the time
series of pressure at the head of the DMA. The proposed method-
ology compares estimates of cumulative distribution functions
(CDFs) of a pressure indicator through consideration of two situa-
tions: under standard operation regimes, and when they are coinci-
dent with the occurrence of a pipe break. In the former case, the
CDF is named the generic or unconditional CDF of the pressure
indicator. In the latter, the CDF is referred to as the break-
conditioned CDF of the indicator. Statistically, when the compared
samples do not follow the same distribution function, it is con-
cluded that the analyzed indicator is dependent on the probability
of pipe breaks. Bayes’ theorem is subsequently invoked in order to
determine the pressure indicator ranges that increase the probability
of pipe breaks. Although pipes are designed to withstand normal
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operating pressures with a safety factor greater than 1, pipes
deteriorate with time and become more vulnerable to pressure-
related failures. The presented methodology is not an attempt to
derive a general relationship between the pressure indicator and
the probability of pipe breaks for a distribution system as a whole.
In this case, both other causes of deterioration, such as material and
age of the pipes, and the mechanism of failures should have been
taken into account. Instead, the main objective of the present study
is to derive a robust and simple methodology to help water utilities
in their difficult task of deciding what pressure limits to impose, in
a pressure-managed DMA, in order to meet their dual objective
of reducing pipe breaks while providing adequate service to the
end users.

The analysis process is summarized in Fig. 1, and comprises the
following basic steps: (1) analysis of the pressure indicator,
(2) analysis of pressure indicator conditioned to breaks, (3) com-
parison, and (4) validation. The first and second steps of the meth-
odology entail determining the probability distribution of the
pressure indicator unconditioned and conditioned to breaks. In
the third step, the unconditional CDF and the break-conditioned
CDF are compared to calculate—through the Bayes’ theorem—
the pressure indicator ranges that increase or reduce the probability
of pipe breaks. Finally, the validation step provides a quantitative
assessment of the predictive power of the proposed methodology.

As shown in Fig. 1, the analysis of the maximum pressure in-
dicator determines the probability distribution of the pressure indi-
cator through its CDF. In the analysis of the indicator conditioned
to breaks, the Kolmogorov-Smirnov test (K-S) is applied to com-
pare the empirical break-conditioned CDF and the unconditional
CDF. If the test is negative, it is concluded that there is a relation-
ship between the pressure indicator and the probability of breaks
½PðBÞ�. The K-S test is used to identify the DMAs where the pres-
sure indicator influences the probability of breaks. In addition to the
empirical break-conditioned CDF, a parametric break-conditioned
CDF is also estimated to avoid problems due to the small number
of points of the empirical curve. The Bayesian information criterion
(BIC) identifies the most likely parametric CDF that fits the

empirical break-conditioned CDF. The Chi-squared test (χ2 test)
assesses whether the parametric break-conditioned CDF belongs
to the same population as the sample of break-conditioned values
of the pressure indicator. The parametric break-conditioned CDF
aims at identifying the probability distribution of the pressure in-
dicator conditioned to breaks. In the third step, the probability dis-
tribution of the unconditional pressure indicator, and of the pressure
indicator conditioned to breaks, are compared through the Bayes’
theorem. The probability ratio (PR) allows the identification of a
pressure indicator threshold, so that for larger values of the pressure
indicator the probability of a break increases. In the validation
period, the predicted and observed failure rates are compared
for the entire validation period and when the pressure indicator
is above and below the obtained threshold.

Unconditional CDF of the Pressure Indicator

The hourly time series of the maximum pressure indicator is de-
rived from the hourly pressure time series by computing, for each
time step, the maximum pressure over the specified time window. It
is calculated as follows:

Ii ¼ maxk¼0,1; : : : ;n−1ðpi−kÞ ð1Þ
where Ii = maximum pressure indicator at time i; pi = hourly
pressure value at time i; and n = number of time steps in the
window with.

The cumulative distribution function of the pressure indicator
and the probability distribution of the indicator are computed
from the marginal distribution of the maximum pressure indicator
time series.

Break-Conditioned CDF of the Pressure Indicator

The break-conditioned time series of the maximum pressure indi-
cator is obtained by selecting, from the hourly time series of
the maximum pressure indicator, those values that correspond to
an instant when a pipe break was reported within the sector. It

Fig. 1. Flowchart of the proposed methodology for reducing pipe breaks in water distribution networks
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represents the maximum instantaneous pressure value recorded
right before a pipe break was reported, and over a specific window
width. The number of pressure indicator values conditioned to
breaks is therefore equal to the number of recorded breaks in
the sector (as they are calculated before each pipe break). The ob-
tained pressure indicator values are used to estimate the break-
conditioned CDF of the pressure indicator.

Fig. 2(a) shows the method to determine a pressure indicator
conditioned to breaks. The time series of water pressure and a pipe
break for a DMA are shown during the period of September 6–13,
2008. In particular, it shows how the pressure values used in the
calculation of the pressure indicator conditioned to breaks are lim-
ited. A 24-h window immediately preceding the failure event is
selected. The window width limits the pressure values used to
calculate a pressure indicator conditioned to breaks. As the aware-
ness time of a larger pipe break could typically be up to 3 days
(Morrison 2004), these pressure values are selected within a
specific window width.

Fig. 2(b) shows the method to compare both functions: the
CDF of the maximum pressure indicator (dots) and the break-
conditioned CDF of the same indicator. Pressure indicator values
conditioned to breaks allow estimating the empirical break-
conditioned CDF (open circles). The parametric break-conditioned
CDF (black solid line) represents the best fit to the empirical break-
conditioned CDF. It allows calculating the probability distribution
of the indicator conditioned to breaks for the same indicator range
as the probability distribution of the indicator.

To compare the pair of distribution functions, the unconditional
CDF and the empirical break-conditioned CDF, the K-S nonpara-
metric test is applied. In this application, the K-S test assesses
whether the two samples come from the same parent population
(null hypothesis). Suppose, F1ðxÞ and F2ðxÞ are two CDFs of
two sample data of a variable x. F1ðxÞ is the empirical break-
conditioned CDF and F2ðxÞ is the unconditional CDF. The null
hypothesis, H0, and the alternative hypothesis, HA, concerning
their CDFs are

H0∶X → F1ðxÞ ¼ F2ðxÞ ð2Þ

HA∶X → F1ðxÞ ≠ F2ðxÞ ð3Þ

and the test statistic, T, is defined as

T ¼ maxxjF1ðxÞ − F2ðxÞj ð4Þ

which is the maximum vertical distance between the distributions
F1ðxÞ and F2ðxÞ. If the test statistic is greater than some critical
value, the null hypothesis is rejected (Khan et al. 2006). If this
is case for the two CDFs being compared, a relationship between
the pressure indicator and the probability of pipe breaks may be
established.

The CDF of the indicator conditioned to breaks could be esti-
mated in a precise manner if the number of years of recorded breaks
was long enough. However, the length of the historical time series
of breaks is insufficient to guarantee a precise statistical characteri-
zation of the extreme indicator values conditioned to breaks from
the empirical distribution and this could lead to instabilities in the
estimation of the probability of pipe breaks. To overcome this limi-
tation, this study proposes to fit the empirical break-conditioned
CDF of the indicator to a parametric CDF. The method used to
fit the CDF of the pressure indicator conditioned to breaks to a
parametric CDF is based on the BIC. This BIC criterion is defined
as follows:

BIC ¼ −2 log tðLÞ þ t logðsÞ ð5Þ

where t = number of parameters in the model; L = probability of
the fitted model; and s = sample size (de-Graft Acquah 2010).
The most probable model is that which minimizes the BIC
criterion.

Subsequently, the Chi-squared test is applied to establish
whether the sample of break-conditioned values of the indicator
follows the same parametric distribution function used in the fit-
ting. The Chi-squared test contrasts the null hypothesis that con-
siders if a sample comes from a specified distribution function
of probability (Chernoff and Lehmann 1954). The null hypothesis,
represented byH0, and the alternative hypothesis,HA, may be writ-
ten as follows:

H0∶X → F1ðxÞ ¼ F0ðxÞ ð6Þ

HA∶X → F1ðxÞ ≠ F0ðxÞ ð7Þ

where X = random variable to be analyzed; x = sample values of
the maximum pressure indicator conditioned to breaks; F1ðxÞ =
empirical break-conditioned CDF and F0ðxÞ is the parametric
break-conditioned CDF. At any significance greater than the
p-value, the null hypothesis should be rejected.

The best parametric break-conditioned CDF fitted to the empir-
ical CDF is also represented in Fig. 2(b). The parametric CDF
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Fig. 2. (a) Method to determine pressure indicators conditioned to breaks: water pressure and a pipe break are represented; (b) method to compare the
cumulative probability of the indicator conditioned and unconditioned to breaks
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allows the probability of the maximum pressure indicator condi-
tioned to breaks to be determined.

Comparison: The Probability Ratio

Bayes’ theorem is applied in order to establish a relationship be-
tween the estimated cumulative probability distribution functions:
the distribution function of the pressure indicator and the distribu-
tion function of the indicator conditioned to breaks.

Two distinct events are considered for a 1-h time interval Δt:
• Event B: A pipe break occurs in the DMA.
• Event I: The pressure indicator takes a value in the inter-

val ½Iα; Iβ�
The probabilities of these two events may be estimated from the

available data. The probability of having a pipe break in any time
interval of one hour is estimated as the number of breaks registered
in the data period, Nb, divided by the number of hours in the data
period, NT

PðBÞ ¼ Nb

NT
ð8Þ

The probability of the pressure indicator taking a value in the
interval ½Iα; Iβ � can be estimated from the CDF of the pressure
indicator

PðIÞ ¼ PðIα ≤ Ii < IβÞ ¼ FIðIβÞ − FIðIαÞ ð9Þ

where Ii = maximum pressure indicator in time interval Δt; and
FIðxÞ = cumulative distribution function of the maximum pressure
indicator particularized for pressure value x.

The conditional probability of the pressure indicator taking a
value in the interval ½Iα; Iβ � if there is a break in the time interval
Δt can also be estimated

PðIjBÞ ¼ Pð½Iα ≤ Ii < Iβ �jBÞ ¼ FIBðIβÞ − FIBðIαÞ ð10Þ
where FIBðxÞ is the break-conditioned cumulative distribution
function of the maximum pressure indicator particularized for pres-
sure value x.

Therefore, Bayes’ theorem may be applied to obtain the prob-
ability of having a pipe break in time intervalΔt when the pressure
indicator takes a value in the interval ½Iα; Iβ �

PðBjIÞ ¼ PðIjBÞPðBÞ
PðIÞ ¼ FIBðIβÞ − FIBðIαÞ

FIðIβÞ − FIðIαÞ
Nb

NT
ð11Þ

The above equation expresses the probability of having a break
in one time interval when the pressure indicator is in the range
given by interval ½Iα; Iβ� and can be related to three factors:
(1) the unconditional probability of the pressure indicator being
in the range ½Iα; Iβ� ½PðIÞ� [Fig. 2(b)], (2) the probability of the
indicator conditioned to breaks being in the range ½Iα; Iβ�
½PðIjBÞ� [Fig. 2(b)], and (3) the system-wide average PðBÞ.

If the break-conditioned and unconditional probabilities of
the pressure indicator are similar, the pressure indicator has little

Fig. 3. Representation of the four DMAs (sector and pipes)
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diagnostic capability for the range ½Iα; Iβ�. In contrast, if the values
are different it may be concluded that the probability of breaks is
increased or decreased by the pressure regime. Therefore, the prob-
ability ratio PðIjBÞ=PðIÞ provides a measure to establish whether
the probability of breaks increases for certain ranges of the pressure
indicator. This coefficient is henceforth termed the probability ratio.

Validation

To validate the model and elucidate its predictive capacity, the pro-
posed methodology is applied to a separate sample of pipe breaks.
To this end, the pressure time series is split into calibration and
validation periods, and the agreement between the predicted and
observed failure rates is evaluated during the validation period.

In the calibration period, the total number of breaks, Nb, and
the number of hours in the data period, NT , are considered, and
its ratio represents the hourly system-wide average probability of
breaks, PðBÞ ¼ Nb=NT .

In the same calibration period, the methodology allows deter-
mining pressure indicator ranges where the probability of breaks
increases, that it is when the probability ratio is greater than 1.
These ranges yield a pressure indicator threshold, which corre-
sponds to the first range that crosses the ratio PR ¼ 1. The first
step of the validation process consists in comparing the probability
of breaks when the pressure indicators are higher or smaller than
this threshold. The probabilities of breaks for different pressure in-
dicator ranges are

½PðBÞ�above ¼
ðNbÞabove
ðNTÞabove

ð12Þ

½PðBÞ�below ¼ ðNbÞbelow
ðNTÞbelow

ð13Þ

where ðNbÞabove and ðNbÞbelow are the number of breaks where the
pressure indicator is above and below the threshold in the validation
period, respectively, and ðNTÞabove and ðNTÞbelow are the number of
hours when the pressure indicator measurements are above and
below the same threshold, respectively.

If the probability of breaks indeed increased when the pressure
indicator is above the threshold, then its probability, ½PðBÞ�above,
would be greater than the probability of breaks when the pressure
indicator is below this threshold, ½PðBÞ�below.

The obtained probabilities in the calibration period are used to
calculate the expected number of pipe breaks in the validation
period. The expected number of failures may be determined as
follows:

½EðNbÞ�validation ¼ PðBÞ · ðNTÞvalidation ð14Þ

½EðNbÞ�above;validation ¼ ½PðBÞ�above · ðNTÞabove;validation ð15Þ

½EðNbÞ�below;validation ¼ ½PðBÞ�below · ðNTÞbelow;validation ð16Þ

The expected number of pipe breaks in the validation period is
represented by ½EðNbÞ�validation and ðNTÞvalidation is the total number
of hours in the validation period. ½EðNbÞ�above;validation and
½EðNbÞ�below;validation are the expected number of pipe breaks in
the validation period, considering the number of hours where
the pressure indicator is above, ðNTÞabove;validation, and below,
ðNTÞbelow;validation, the threshold, respectively. The predicted and
observed failure rates are compared to validate the presented
methodology.

In the validation period, the performance of the proposed meth-
odology may be assessed by comparing the probability of breaks
when the indicator is above the threshold, ½PðBÞ�above;validation, with
the average probability of breaks over the whole validation period,
½PðBÞ�validation. The ratio between these two probabilities is named
information ratio IR and has the following expression:

IR ¼ ½PðBÞ�above;validation
½PðBÞ�validation

¼
½EðNbÞ�above;validation
ðNT Þabove;validation
½EðNbÞ�validation
ðNT Þvalidation

ð17Þ

Information ratios above 1 indicate that pressure management
strategies based on the proposed methodology may be successful
in reducing the number of pipe breaks.

Case Study

The methodology is applied to four sectors or DMAs of a water
distribution network located in Madrid (Spain). Fig. 3 shows the
representation of the four DMAs. The validation processes is car-
ried out in the first DMA. Table 1 presents the general character-
istics of the studied sectors.

Data pertinent to water pressure and pipe breaks were collected
from the four DMAs. In addition, pressure data were grouped by
periods of time with steady supply conditions and break records
were only attached to pipes in the DMA. Fig. 4 shows the number
of pipe breaks by DMA and when they were recorded, and also the
period of steady pressure heads. The period of time of the third and
fourth DMAs with only 17 and 16 breaks are not considered, as it
may not represent in a reliable way the break-conditioned CDF of
the pressure indicator. Pressures are measured at the entry point of
the DMA. The average pressure over the DMA is obtained by add-
ing the difference between the elevation of the entry point to the
DMA and the average elevation of the section to the pressure at
the head of the DMA (García et al. 2006). Table 2 shows the eleva-
tion of the entry points to the DMAs and their average elevation, as
well as the time period of date records when the number of breaks is
greater than 30. The average pressure at the head of the DMA is
calculated as the average of the instantaneous pressure values re-
corded at the head of the DMA and over the period of time shown in
Table 2. The average pressure in the DMA is also determined by
means of the elevation difference. Table 3 shows the number
of pipe breaks, the break rate data, and the properties of the breaks
according to pipe material and diameter, for the four DMAs.
Unfortunately, records of age and mechanism of failure are not
available. Break rates are defined as the number of pipe breaks
per year and kilometer of the network in the DMA (number of
days year−1 km−1). As can be seen in Table 3, a high percentage
of breaks correspond to fiber-cement pipes although they do not
represent the predominant material in the area (Table 1). As for
the diameter of the pipes breaks, the percentage of breaks with
diameter of less than 150 mm is higher than the percentage of pipe
length for this cohort in all cases. The data suggest a relationship
between pipe breaks and pipe material and diameter. It may be use-
ful to segregate the break data by homogenous groups of materials,
diameter, ages, and mechanism of failure. However, the number of
available pipe breaks is insufficient to obtain a robust statistical
analysis and a proper estimate of the CDF conditioned to breaks
in each cohort. Accordingly, all pipes in every DMAwere grouped
together in the present analysis. The maximum pressure indicator is
chosen in this study, as it is well established that maximum pressure
is a key control parameter to understand and reduce the number of
pipe breaks in pressure management.
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Results and Discussion

Probability Ratios

The maximum window width used to determine the maximum
pressure indicators is 5 days and is chosen to yield the largest differ-
ence between the unconditional CDF and the empirical break-
conditioned CDF (Martínez-Codina et al. 2013). The window
width of 5 days covers the awareness time for larger pipe breaks
that may be up to 3 days (Morrison 2004), allowing for a maximum
time error of 2 days.

The time series of the maximum pressure indicator was used
to derive the empirical CDF for the unconditional and break-
conditioned cases. The K-S nonparametric goodness of fit test
was used to compare both distributions. Table 4 shows the results
of the K-S nonparametric test at 95% significance level for
the four DMAs. The K-S test demonstrates that the maximum
pressure indicator may not influence the probability of breaks
for the third DMA because the p-value is above 0.05 (95% con-
fidence level). For the other DMAs, the null hypothesis of the
K-S test is rejected. Therefore, the maximum pressure indicator
may be studied in more detail in order to determine indicator ranges
associated with an increase in the break probability, as this indicator
exhibits a distinct statistical behavior when conditioned to breaks.

The break-conditioned CDF was then fitted to a parametric dis-
tribution, and the BIC was used to select the model that best fits the
break-conditioned CDF of the maximum pressure indicator. The
parametric distribution functions tested in the fitting are beta, ex-
ponential, extreme value, gamma, generalized extreme value, gen-
eralized Pareto, normal, lognormal, Rayleigh, and Weibull. Table 5
shows the performance of the model, which minimizes the BIC
criterion, and also provides the parameter values of the model,
for the three selected DMAs.

The Chi-squared test is applied to evaluate whether the sample
break-conditioned distribution comes from the parametric distribu-
tion function selected with the BIC criterion. The test results pro-
vided in Table 5 indicate that p-values are found above 0.05 for all
DMAs. This analysis indicates that all the three parametric distri-
bution functions reproduce quite well the distribution of the maxi-
mum pressure indicator conditioned to breaks, at a confidence level
of 95%.

Fig. 5 shows comparative graphical plots of (1) the uncondi-
tional CDF, (2) the empirical break-conditioned CDF, and
(3) the parametric break-conditioned CDF, for the maximum pres-
sure indicator and the three selected DMAs. For a specific pressure

Table 1. General Characteristics for the Four DMAs

DMA Area (km2) Long (km)

Length by material Length by diameter Length by age

Material Long (km) % Diameter (mm) Long (km) % Age Long (km) %

1 2.11 58.67 Steel 0.41 1 <150 20.70 35 1950–1965 27.12 46
Fiber cement 0.83 1 150–200 28.32 48 1966–1980 5.32 9
Ductile iron 26.83 46 250–300 5.12 9 1981–1995 10.94 19
Grey iron 30.28 52 350–400 1.57 3 1996–2013 15.29 26

Polyethylene high density 0.23 0 ≥ 450 2.97 5 ND 0.01 0
Polyethylene 0.10 0 — — — — — —

2 1.91 36.14 Fiber cement 2.60 7 <150 5.39 15 1950–1965 0.11 0
Ductile iron 31.33 87 150–200 23.39 65 1966–1980 6.46 18
Grey iron 2.16 6 250–300 3.59 10 1981–1995 8.50 24

Polyethylene 0.03 0 350–400 3.52 10 1996–2013 20.14 56
ND 0.01 0 ≥450 0.24 1 ND 0.92 3
— — — ND 0.01 0 — — —

3 6.21 46.39 Fiber cement 14.59 31 <150 16.38 35 1966–1980 6.41 14
Ductile iron 30.85 67 150–200 22.45 48 1981–1995 3.16 7
Grey iron 0.29 1 250–300 5.21 11 1996–2013 24.46 53
Concrete 0.66 1 350–400 1.26 3 ND 12.36 27

— — — ≥ 450 1.10 2 — — —
4 1.52 43.78 Fiber cement 2.46 6 <150 21.94 50 1981–1995 0.22 1

Ductile iron 34.31 78 150–200 12.00 27 1996–2013 29.95 68
Grey iron 0.51 1 250–300 5.11 12 ND 13.61 31

Polyethylene high density 0.24 1 350–400 4.11 9 — — —
Polyethylene 3.28 7 ≥ 450 0.62 1 — — —

PVC 2.98 7 — — — — — —

Note: ND = not defined; PVC = polyvinyl chloride.

23−Aug−2006 01−Jan−2008 01−Jan−2010 01−Jan−2012
0

1

2
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46 breaks

43 breaks

17 breaks 48 breaks

16 breaks 32 breaks

N
um

be
r 

of
 D

M
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Period of time
Breaks

Fig. 4. Periods of time with steady conditions of water supply and
number of breaks for the four DMAs
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interval ½Iα; Iβ� the CDFs yield the probability of the indicator
belonging to the interval. CDF (1) is used for unconditional
distribution and CDF (3) for break-conditioned distribution.
The relationship between them is referred to as the probability
ratio.

In each DMA, the total range of the pressure indicator was di-
vided into six intervals of equal length and the unconditional and
break-conditioned probabilities were computed for each interval.
The probability ratios (PRs) are shown in Fig. 6, for all three
DMAs. The PRs calculated with the empirical break-conditioned
CDF (dashed lines) are distinguished from those determined with
the parametric break-conditioned CDF (solid lines). A horizontal
line identifies the unit PR. The probability ratio is larger than 1
for certain maximum pressure ranges and, therefore, the probability
of failure increases for these indicator ranges. The implication from

a management perspective is clear: these latter cases should be
avoided in order to minimize the number of breaks in the studied
DMAs.

Qualitatively, all PRs follow a common trend (Fig. 6): the PRs
are lower for small values of the maximum pressure indicator and
increase for high values. This means that the probability of breaks
increases for high ranges of the maximum pressure indicator. These
results suggest that the reduction of the high maximum pressure

Table 2. Date Records, Elevation at the Head of Each DMA, Average Elevation of the DMA, Elevation Difference between the Elevation Head and the
Average Elevation, Average Pressure at the Head of the DMA, and the Average Pressure of the DMA Determined by Means of the Elevation Difference for the
Four DMAs

DMA Date records
Elevation
at head (m)

DMA average
elevation (m)

Elevation
difference (m)

Average pressure
at head (m)

DMA average
pressure (m)

1 17/01/2011-03/06/2012 692 670 22 51 73
2 23/08/2006-01/12/2011 653 655 −2 94 92
3 23/05/2008-29/04/2010 642 642 0 113 113
4 30/11/2009-23/04/2012 686 643 33 34 67

Table 3. Number of Pipe Breaks, Failure Rate, and Number of Breaks by Material and Diameter for the Four DMAs

DMA Number of breaks Failure rate (breaks=year=km)

Breaks by material Breaks by diameter

Material Number % Diameter (mm) Number %

1 46 0.57 Fiber cement 14 30 <150 20 43
Ductile iron 2 4 150–200 11 24
Grey iron 23 50 250–300 6 13

ND 7 15 ≥ 450 2 4
ND 7 15

2 43 0.23 Fiber cement 37 86 <150 29 67
Ductile iron 1 2 150–200 13 30
Grey iron 3 7 250–300 1 2

Polyethylene 1 2
ND 1 2

3 48 0.53 Fiber cement 41 85 <150 42 88
Ductile iron 1 2 150–200 5 10
Grey iron 3 6 ND 1 2

ND 3 6
4 32 0.30 Fiber cement 9 28 <150 26 81

Ductile iron 1 3 150–200 4 12
Polyethylene high density 6 19 ND 2 6

Polyethylene 13 41
PVC 1 3
ND 2 6

Note: ND = not defined; PVC = polyvinyl chloride.

Table 4. Test Results (p-Values) of the K-S Test for the Difference
between Unconditional CDF of the Maximum Pressure Indicator and
Empirical Break-Conditioned CDF of the Same Indicator at the 95%
Confidence Level for the Four DMAs

DMA p-value K-S test (accepted)

1 0.0114 No
2 0.0126 No
3 0.0962 Yes
4 1.77 × 10−4 No

Table 5. For the Selected DMAs, Models Fitted to the CDFs of the
Maximum Pressure Indicator Conditioned to Breaks by the BIC
Criterion, Their CDF Parameters, and the Results of the BIC Criterion

DMA
Parametric

CDF
CDF

Parameters BIC
p-

value

Chi-
squared
test

(accepted)

1 Extreme
value

Location 81.0973 126.0296 0.3201 Yes
Scale 0.8329

2 Gamma Shape 3.707 · 103 138.7333 0.0991 Yes
Scale 0.0261

4 Extreme
value

Location 71.5008 98.6187 0.1647 Yes
Scale 1.1124

Note: The test results (p-values) of the Chi-squared test for the difference
between empirical and parametric break-conditioned CDF of the maximum
pressure indicator at the 95% confidence level are also presented.
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values may reduce the frequency of breaks in the three se-
lected DMAs.

The crossover thresholds of the maximum pressure indicator,
that is when the PR is equal to 1, may be determined from Fig. 6.
The parametric distribution function allows smooth intermediate
probabilities at the extreme of the indicator conditioned to breaks.
For this reason, the thresholds, from which the probability of breaks
increases, are calculated from the parametric break-conditioned
CDF. These thresholds are 79, 96, and 70 m pressure head for
the first, second, and fourth DMA, respectively. It is interesting
to note that the proposed strategy imposes these limits on the maxi-
mum pressure in order to reduce the number of pipe breaks. As
pipes age and deteriorate, their conditions may change, so the es-
timations of the CDFs need to be periodically repeated to incorpo-
rate the changing conditions of the network. Consequently, the
obtained thresholds should be updated and it is recommended that
they should be used only for short-term planning. Moreover, the
difference between thresholds should be noticed. The pressure
threshold of the first DMA is 79 and its failure rate is 0.57, whereas
the recommended threshold for the second DMA is 96 and its fail-
ure rate is 0.23. For DMA 4 the threshold is 70 m and the break rate
is 0.30. Differences in behavior can be explained in terms of the
different composition of pipe material and diameter and different
pressure ratings. Every DMA has specific conditions, like its oper-
ating pressure, and pipes are designed based on these conditions,
choosing different materials. Therefore, the thresholds obtained are
local and valid only for the DMA where the inference was made.

As Fig. 6 shows, the system-wide average probability of breaks,
PðBÞ, could be multiplied by high values for certain ranges of the
maximum pressure indicator. The PRs reach values of 2.29, 6.02,
and 2.27 if the empirical break-conditioned CDF is considered and
1.78, 4.43, and 2.14 if the parametric break-conditioned CDFs are
used, for the three selected DMAs, respectively. The maximum PR
is higher when the empirical break-conditioned CDF is considered.
As explained previously, when the empirical break-conditioned
CDF is fitted to a parametric CDF the intermediate values are
smoothed. The obtained PRs for certain indicator ranges confirm
that high maximum pressure ranges may allow determining the
probability of pipe breaks in this study. As these PRs acquire con-
siderably high values for certain maximum pressure ranges, such
ranges should be avoided as far as possible to reduce the probability
of pipe breaks.

Validation and Discussion

The proposed methodology is validated on one set of data of the
first DMA. The calibration period starts on January 17, 2011 and
finishes on January 13, 2012 and 34 breaks occurred in this period.
The validation period is from January 13, 2012 to 3 June 3, 2012
and the number of observed breaks is 12.

The methodology is applied to the calibration period and the
results show that, indeed, the probability of breaks increases when
the maximum pressure head indicator threshold is greater than

Unconditional CDF Empirical break−conditioned CDF Parametric break−conditioned CDF 
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Fig. 6. For the three selected DMAs and for the maximum pressure indicator: the PR, when the empirical and parametric CDFs conditioned to breaks
are considered
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80 m. Table 6 summarizes the results of the validation processes.
As can be expected, it is relevant to note that the probability of
breaks is higher when the pressure indicator is above the threshold
than when it is below. It should be mentioned that the expected
number of pipe breaks are very close in value to the observed failure
rates. The number of pipe breaks in the validation processes is 12
and the expected number is 11.27. If only indicators conditioned to
breaks higher or lower than the threshold are considered, the pre-
dicted number of breaks, 13.78 and 2.67, is slightly higher than the
number of observed failures, 11 and 1. Therefore, these results
show good agreement between the predicted and observed pipe
breaks.

The IR in the validation period, referred to number of values
when the pressure indicator is greater than the threshold, may
be calculated as

IR ¼ ½PðBÞ�above;validation
½PðBÞ�validation

¼
½EðNbÞ�above;validation
ðNT Þabove;validation
½EðNbÞ�validation
ðNT Þvalidation

¼ 1.37 ð18Þ

Consequently, the probability of breaks when the pressure is
above the threshold is larger than the probability of breaks in
the validation period. In addition, an information ratio above
one suggests that the proposed methodology is able to identify
pressure ranges linked to higher probability of failure.

However, there may be an optimum threshold that establishes a
larger difference between these two probabilities. Fig. 7 shows the
IR for different maximum pressure thresholds. As can be seen, the
predicted IR obtained with the methodology, 1.37, is close in value
to the empirical optimum IR, 1.59. The discretization of the maxi-
mum pressure range may affect the results as the number of
divisions considered to calculate the predicted IR may vary. In
the presented case, the number of divisions is six, and this could
explain the slight difference between the predicted IR and the em-
pirical optimum IR.

Although the results show that the proposed analysis can be
used to incorporate the goal of reducing pipe breaks while deciding
maximum pressure target in pressure management for water distri-
bution networks, there are some limitations. First, the pressure data
are limited. Pressure measurements were only collected at 15-min
intervals, and therefore the nature of the pressure data made it
impossible to determine whether the breaks were due to short term

hydraulic transients during the 15-min sampling intervals. The oc-
currence of pressure transients, which are the cause of a significant
fraction of pressure breaks, could not be explicitly included in the
pressure indicator used in the analysis. Second, the data on pipe
breaks are also limited, because they did not identify failure mode.
No attempt was made to remove breaks from the history where the
breaks were most likely not due to pressure, as such data were not
available. Breaks that were not caused by pressure conditions in-
troduce noise in the data that prevents from obtaining a clear and
coherent signal in the analysis. Third, the analysis is based on pres-
sure as the only explanatory variable for pipe breaks. Break prob-
ability is a complex function of many other variables, like age,
material, or diameter that could have been included in the analysis.
The reduced number of pipe breaks in the DMAs under study pre-
vented a more detailed analysis segregating the data by age,
material or diameter, as the resulting number of breaks in each co-
hort would be too small for statistical inference. Fourth, the analysis
of pressure is highly simplified. The somewhat arbitrary nature of
the adopted pressure indicator is acknowledged. The authors have

Table 6. Results of the Validation Processes

Period Formulation Value Units

Calibration period Threshold 80.66 m
Nb 30 Number
NT 8,618 Number

PðBÞ ¼ Nb
NT

0.0035 Probability
ðNbÞabove 14 Number
ðNTÞabove 2,189 Number

½PðBÞ�above ¼ ðNbÞabove
ðNT Þabove 0.0064 Probability

ðNbÞbelow 16 Number
ðNTÞbelow 6,429 Number

½PðBÞ�below ¼ ðNbÞbelow
ðNT Þbelow 0.0025 Probability

Validation period ðNbÞvalidation 12 Number
ðNTÞvalidation 3,221 Number

ðNbÞabove; validation 11 Number
ðNTÞabove; validation 2,153 Number
ðNbÞbelow; validation 1 Number
ðNiÞbelow; validation 1,068 Number

ðE½Nb�Þvalidation ¼ PðBÞ · ðNTÞvalidation 11.27 Number
ðE½Nb�Þabove; validation ¼ ðPðBÞÞabove · ðNTÞabove; validation 13.78 Number
ðE½Nb�Þbelow; validation ¼ ðPðBÞÞbelow · ðNTÞbelow; validation 2.67 Number
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Fig. 7. IR for different maximum pressure thresholds. The predicted
IR and the empirical optimum IR are remarked
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worked under the assumption that the average pressure over the
entire DMA is representative of pressure supported by every pipe
in the area. Head losses and differences in elevation introduce un-
certainties that may weaken the correlation between the pressure
indicator and pipe working conditions. Fifth, the assessment does
not consider dynamic factors. The assumption that the conclusions
drawn from breaks registered in a given time period will be valid in
the future is clearly flawed because many dynamic factors, like pipe
aging, partial renovations, or changes in management, are in place.
The analysis would have to be periodically updated to account for
the changing conditions in the DMA. Despite these limitations, the
analysis advances the knowledge of pipe break behavior in the
DMA and provides a methodology for adopting pressure manage-
ment decisions that may reduce break rate.

Conclusions

This paper presented a new methodology that aims at determining
pressure indicator ranges that quantify the probability of pipe
breaks in water distribution networks. The proposed methodology
identifies a PR that compares the probability distribution of the
pressure indicator conditioned to breaks with the unconditional
probability distribution of the same indicator. The first one repre-
sents the CDF of the pressure indicator conditioned to pipe breaks.
The second probability distribution is based on the CDF of the
overall pressure indicator values. The PR shows that, when it is
greater than 1, the probability of breaks increases for certain pres-
sure ranges. In the case of the PR not exceeding the value of 1, the
probability of breaks would not necessarily increase for any values
of the pressure indicator.

The methodology, based on the maximum-pressure indicator,
was applied to four DMAs in Madrid (Spain), considering periods
of time with steady supply conditions and a considerable number of
reported breaks. The probability of pipe breaks is calculated
through the analysis of the distribution of past failure records.
The Kolmogorov-Smirnov nonparametric goodness-of-fit test indi-
cates that the maximum pressure indicator influences the probabil-
ity of pipe breaks in the first, second, and fourth DMAs, which are
selected to apply the methodology.

As the number of points of the empirical break-conditioned is
not high, the empirical break-conditioned CDF is fitted to the best
parametric distribution function by means of BIC. Test results of
the Chi-squared test shows that the parametric CDF can reproduce
the distribution of the indicator conditioned to break at the 95%
confidence level, for all three selected DMAs.

The results of this study show that the maximum pressure in-
dicator should have an upper limit to reduce the probability of pipe
breaks. The thresholds of the maximum pressure indicator in the
analyzed sectors are 79, 96, and 70 m for the three sectors exam-
ined. These thresholds are obtained when the PR is greater than 1.
As pipes age and deteriorate, these thresholds need to be updated
with the model and the obtained results may change in time. In
addition, the needs of the users of the water distribution systems
should be satisfied, such that sufficient water pressure must be pro-
vided to the built environment. The maximum water pressure
should, at least, be limited to the thresholds that correspond to
the highest PR values, which are 1.78, 4.43, and 2.14. Another rea-
son to limit the thresholds to the highest PR values is that pipes are
designed to withstand normal operating pressures with a factor of
safety greater than 1. The high values of the PR indicate that the
maximum pressure range may have diagnostic capability to predict
the probability of breaks in this study.

The methodology is validated in the first DMA. In the calibra-
tion period, 34 breaks were registered and in the validation period,
12. The calibration period establishes a threshold of the maximum
pressure indicator of 80 m, from which the probability of breaks
increases. The expected number of breaks calculated with the meth-
odology is 11.27 for all validation period, 13.78 if the pressure in-
dicator is above the calculated threshold and 2.67 if the indicator is
below it. The observed number of breaks is very close to the ex-
pected number: 12 pipe breaks have been recorded in all validation
period, 11 when the indicator is above the threshold and only one
when it is below the threshold. The quality of the predictions ob-
tained from the analysis is satisfactory because the results report
good agreement between predicted and observed number of
failures.

The IR, expressed as the relationship between the probability of
breaks when the indicator is above the obtained threshold and the
probability of breaks over the entire validation period, is 1.37, close
in value to the empirical optimum IR, which is 1.59. Therefore, the
methodology represents adequately the difference between the
probability of breaks and the probability of breaks conditioned
to the maximum pressure indicator.

The proposed methodology could help water utilities reduce the
number of system failures through pressure management. The
Bayesian approach presented here may be applied to other water
distribution networks, and suitable water pressure indicators related
to pipe breaks may be explored and tested.
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